Show simple item record

dc.contributor.authorLukáš, Dalibor
dc.contributor.authorOf, Günther
dc.contributor.authorZapletal, Jan
dc.contributor.authorBouchala, Jiří
dc.date.accessioned2020-01-14T07:18:39Z
dc.date.available2020-01-14T07:18:39Z
dc.date.issued2019
dc.identifier.citationMathematical Methods in the Applied Sciences. 2019.cs
dc.identifier.issn0170-4214
dc.identifier.issn1099-1476
dc.identifier.urihttp://hdl.handle.net/10084/139059
dc.description.abstractHomogenized coefficients of periodic structures are calculated via an auxiliary partial differential equation in the periodic cell. Typically, a volume finite element discretization is employed for the numerical solution. In this paper, we reformulate the problem as a boundary integral equation using Steklov-Poincare operators. The resulting boundary element method only discretizes the boundary of the periodic cell and the interface between the materials within the cell. We prove that the homogenized coefficients converge super-linearly with the mesh size, and we support the theory with examples in two and three dimensions.cs
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesMathematical Methods in the Applied Sciencescs
dc.relation.urihttps://doi.org/10.1002/mma.5882cs
dc.rights© 2019 John Wiley & Sons, Ltd.cs
dc.subjectboundary element methodcs
dc.subjecthomogenizationcs
dc.titleA boundary element method for homogenization of periodic structurescs
dc.typearticlecs
dc.identifier.doi10.1002/mma.5882
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.identifier.wos000501531400001


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record