Show simple item record

dc.contributor.authorArumugam, S.
dc.contributor.authorKamatchi, N.
dc.contributor.authorKovář, Petr
dc.date.accessioned2016-05-11T07:39:20Z
dc.date.available2016-05-11T07:39:20Z
dc.date.issued2016
dc.identifier.citationUtilitas Mathematica. 2016, vol. 99, p. 131-142.cs
dc.identifier.issn0315-3681
dc.identifier.urihttp://hdl.handle.net/10084/111538
dc.description.abstractLet G = (V, E) be a graph of order n. A bijection f : V -> {1, 2, ..., n} is called a distance magic labeling of G if there exists a positive integer k such that Sigma(u is an element of N(v)) f(u) = k for all v is an element of V, where N(v) is the open neighborhood of v. The constant k is called the magic constant of the labeling f. Any graph which admits a distance magic labeling is called a distance magic graph. In this paper we present several results on distance magic graphs along with open problems.cs
dc.language.isoencs
dc.publisherUniversity of Manitobacs
dc.relation.ispartofseriesUtilitas Mathematicacs
dc.subjectDistance magic labelingcs
dc.subjectmagic constantcs
dc.titleDistance magic graphscs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume99cs
dc.description.lastpage142cs
dc.description.firstpage131cs
dc.identifier.wos000372853600010


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record