Tab. č. 3 Vypočtené a experimentální hodnoty rychlosti vývinu tepla, doby trvání požáru, výšky plamene a hustoty toku radiačního tepla

<table>
<thead>
<tr>
<th>Většina</th>
<th>Vypočetná hodnota</th>
<th>Experimentální hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rychlost vývinu tepla $Q$</td>
<td>127,55 kW</td>
<td>90 kW</td>
</tr>
<tr>
<td>Doba trvání požáru $t_0$</td>
<td>8,4 min</td>
<td>22 min</td>
</tr>
<tr>
<td>Výška plamene $H_f$</td>
<td>1,25 m (Heskestad)</td>
<td>1,2 m</td>
</tr>
<tr>
<td></td>
<td>2,21 m (Thomas)</td>
<td></td>
</tr>
<tr>
<td>Hustota toku radiačního tepla $q_{rad}$</td>
<td>6,2 kW/m²</td>
<td>2,8 kW/m²</td>
</tr>
</tbody>
</table>

V tabulce č. 3 jsou porovnány naměřené a vypočtené hodnoty vybraných charakteristik požáru. Vypočtené hodnoty výkonu požáru jsou v řešeném příkladu vyšší než hodnoty zjištěné při experimentech, doba požáru je kratší u vypočtené hodnoty v porovnání s tím, jak dlouho skutečně probíhala požární zkouška. Výška plamene vypočtená podle Heskestada je téměr totožná s experimentální hodnotou a výpočet podle Thomasa udává hodnotu vyšší. Vypočtená hodnota hustoty toku radiačního tepla je vyšší než naměřená radiometrii při požární zkoušce. Tyto rozdíly mezi vypočtenými a naměřenými hodnotami lze vysvětlit tím, že při požáru hořlavé kapaliny docházelo k tzv. používání plamene, což bylo způsobeno tím, že se vzrušující částem se zvětšovala vzdálenost mezi okrajem nádoby, ve které byla umístěna hořlavá kapalina, a hladinou hořlavé kapaliny a tím nebyl zajištěn rovnovážný přírůst kyslíku.

Závěr

Výkon požáru, doba trvání požáru a výška plamene jsou parametry požáru, které pomáhají při plánování požárních zkoušek, hodnocení požárního nebezpečí, a matematickém modelování požáru. Pro praktickou aplikaci a usnadnění zrychlení výpočtu je vhodné si vypracovat algoritmus výpočtu v excelovské tabulce s korektními koeficienty s ohledem na hodnoty naměřené při experimentu (pokud jsou k dispozici).

Literatura


Vliv velikosti vodních kapiček na podmínky v místě požáru

Ing. Petr Bítala
VŠB - TU Ostrava, Fakulta bezpečnostního inženýrství
Lumírova 13, 700 30 Ostrava-Vyškovice
petr.bitala@vsb.cz

Abstrakt

Příspěvek se zabývá problematikou vlivu velikosti vodních kapiček na podmínky v místě požáru. Přinesl souhrn zjednodušených vypočetních postupů využitelných pro odhad rychlosti, maximální doby života a maximální délky dopadu kapiček vody v horkém prostředí požáru. Znalost všech těchto zmiňovaných faktorů má významné náleží pro počlenění vlivu vodní kapaliny na podmínky v místě požáru.

Klíčová slova

průměr vodní kapičky, rychlost pádu, vzdálenost dopadu, požár, vodní stále hasiči zasazení

Úvod

Využití instalací stabilních hasičích zařízení, je již v současné době jednou z všeobecně respektovaných forem realizace aktivního preventivního ochrany prostor a objektů. Velmi často se lze s instalací systémů stabilních hasičích zařízení setkat především v nově budovovaných objektech a to jak výrobního tak nevýrobního charakteru. Využití systémů stabilních hasičích zařízení je v tomto případě jednou z měla variant, jak zachovat dispozičně neelektrizovaný prostor při splnění podmínek, kladených na požární bezpečnost prostorů nebo celého objektu. I přes značně bohatou nabídku různých druhů stabilních hasičích zařízení a využívaných hasičích

látě, je téměř dominantní u většiny instalovaných systémů využívaná jako hasicí látky voda. V uvažovaných případech tak hovoříme o spirálovým, dřenčerovým, sprejovým nebo mlhových stabilních hasičích zařízeních. Ve všech těchto případech je dominantním kritériem pro volbu konkrétní aplikace s vodou jako hasicí látkou především:

- vysoký chladicí efekt vody,
- chemická neutralita a nejedovatost,
- cenová dostupnost.

Hasební efekt vody je však ve značné míře ovlivněn celou řadou faktorů, mezi něž lze zahrnout například vlhlosti, hořlavých látek, intenzitu dodávky, využití chemických přísad a také rovněž velikost kapiček vody. Velikost kapiček vody je jedním z významných faktorů, který souvisí s skutečností, jak ovlivní funguje stabilního hasičského zařízení podmínky v místě požáru, jako jsou například viditelnost, poloha neutronální roviny, toxicita produktů hoření apod. S ohledem na tyto skutečnosti bude příspěvek v další části věnován problematice vypořádání kapiček vody a jeho efektu na objem koule v průběhu procesu hoření [6].

Jedním z předpokladů změny objemu koule a tím související polohy neutronální roviny je skutečnost, že se voda vyprašuje v místě požáru (pásma hoření a připravy). K této situaci však nedochází ve všech případech. Veľké kapky vody mohou projít dokonce skrz plameny, zatímco ty nejmenší se vypáří již v horkém kouři. Ujednávajícím faktorem se v tomto případě stává velikost kapiček vody, jejich rychlost a trajektorie. Seběhavost je tvorbou vodních kapiček na tříštící hladince vodního SHZ vyobrazena na Obr. č. 1.
**PREVENCE**

Obr. č. 1 Tvorba vodních kapiček na tříštěcí hlavice SHZ

**Rozbor pohybu vodní kapky**

V případě vodního stabilního hasičího zařízení dochází k aktivaci systému buď při dosažení statické reakční teploty detektého přírucku nebo v disledek detekce požáru instalovaným detekčním systémem. Aktivace příslušné hlavice nebo skupiny hlavic systému umožnění výtok vody z hlavice, kdy objemový průtok vody hlavice je za jednotku času dán součinem plochy výtoku šroubu a rychlosti vodního proudu v<sub>y</sub>. Vodní proud dopadá na vhodně tvorovaný tříštěcí, což způsobí rozpad vodního proudu na vodní kapky. Pohyb vznikajících vodních kapek, lze obecně popsat trajektorií hmotního bodu při "šikmém vzhůru" vzdvuhu<sup>1</sup> s počáteční rychlostí v<sub>y</sub> (rychlost odražené vodní kapky) a elevačním úhlem α (úhel, který svírá vektor počáteční rychlosti s vodorovnou rovinou). Vzhledem ke skutečnosti, že se po celé své dráze pohybuje kapička vody prostředím, které na ně působí odporovou (brzdící) sílu F<sub>g</sub>, pohybuje se po tzv. balistické krivce.

Obr. č. 2 Trajektorie vodní kapičky

Analýzu pohybu kapičky je z důvodu názornosti výhodné provádět odděleně ve směru vodorovném a směru svislém. Ve směru vodorovnom se kapička vody pohybuje s počáteční rychlostí v<sub>y</sub>, brzděna odporovou sílou F<sub>g</sub>. Velikost odporové síly F<sub>g</sub> je při malých rychlostech kapičky v každém bodu trajektorie přímo úměrná velikosti okamžité rychlosti kapičky v a za předpokladu kulovitého tvaru kapičky lze její velikost stanovit dle Stokesova zákona:

\[
F_{\text{od}}(x, y) = 6 \cdot \pi \cdot r \cdot v(y, y) \cdot \eta
\]

kde:
- F<sub>od</sub> — odporová síla prostředí ve směru x (vodorovném) nebo y (svislém) [N],
- \( \eta \) — dynamická viskozita prostředí [Pa.s],
- v(y, y) — rychlost kapičky ve směru x (vodorovném) nebo y (svislém) [m/s],
- r — poloměr kapičky [m].

Vzhledem ke skutečnosti, že je pohyb kapičky ve vodorovném směru brzděn odporovou sile F<sub>g</sub>, dochází vlivem účinku této síly k postupnému snižování okamžité vodorovné rychlosti kapičky v<sub>y</sub>. V bodě 2, viz Obr. č. 2, klesne vodorovná složka rychlosti kapičky na nulu, vzniká vodorovná složka odporové síly a od tohoto okamžiku se již kapička dále pohybuje jen ve směru svislém.

Ve svislém směru se kapička pohybuje s počáteční rychlostí v<sub>y</sub> směrem vzhůru, brzděna odporovou sile F<sub>g</sub> a tihovou silou F<sub>g</sub> Vlivem působení odporové a tihové síly, dochází k postupnému snižování okamžité svislé rychlosti kapičky v<sub>y</sub>. V bodě 1, viz Obr. č. 2, klesne svislá složka rychlosti kapičky na nulu a od tohoto okamžiku se již kapička bude pohybovat volným pádem brzděným svislou složkou odporové síly F<sub>g</sub>, jejíž velikost lze stanovit dle rovnice 1. Velikost tihové síly, která určuje pohyb kapičky, lze za předpokladu kulovitého tvaru kapičky stanovit následovně:

\[
F_{g} = m \cdot g = \rho_{v} \cdot V \cdot g = \frac{4}{3} \pi r^3 \cdot \rho_{v} \cdot g
\]

kde:
- \( \rho_{v} \) — hustota vody [kg/m<sup>3</sup>],
- g — gravitací konstanta = 9.81 [m/s<sup>2</sup>].

Protože síly F<sub>g</sub> a F<sub>o</sub> mají od budou 1 navzájem opačný směr, bude padající kapička vody zvyšovat svou rychlost pouze do ustálení rovnováhy těchto sil. Od tohoto okamžiku se již rychlost pohybu kapičky dále zvyšovat nebude a zůstane konstantní. Při obecném pohybu v tekutině hustoty \( \rho_{o} \), (nahmene-li do analýzy i větší složku sílu tekutiny) lze konstantní rychlost kapičky vody v, stanovit následovně:

\[
v = \frac{2v_{0}^2 g}{9\eta} (\rho_{v} - \rho_{o})
\]

kde:
- \( \rho_{o} \) — hustota tekutiny [kg/m<sup>3</sup>].

Přibližnou hodnotu konstantní rychlost volně padajících kapiček vody při pokojové teplotě (20 °C) a atmosférického tlaku vzdvuhu (101325 Pa) lze stanovit v závislosti na velikosti průměru kapiček vody s využitím Tab. č. 1 [1, 3, 8, 9].

<table>
<thead>
<tr>
<th>Průměr kapičky [mm]</th>
<th>Rychlost kapičky [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 0,1</td>
<td>v = 30 \cdot 10^4 d</td>
</tr>
<tr>
<td>0,1 – 1</td>
<td>v = 4 \cdot 10^4 d</td>
</tr>
<tr>
<td>1 – 4</td>
<td>v = 150 \cdot 1</td>
</tr>
</tbody>
</table>

**Vypařování kapiček vody**

V okamžiku, kdy je vodní sprehový proud aplikovaný stabilním hasičím zařízením do místa požáru a setkává se tak s horkými plyny nebo plameny, dochází k přenosem tepla do kapiček vody, které se ohrívají a začínají vypařovat. V případě malých kapiček vody je přestup tepla do kapiček uskutečňován převážně formou přirozené konvekce. U větších kapiček vody majících vyšší rychlost pak jde o formu přestupu tepla konvekci vynucenou. Množství tepelné
energie přenesené za jednotku času do kapičky vody (tepelný tok) lze popsat s využitím následujících rovnic:
\[
\frac{dQ}{dt} = h A \Delta T = h 4 \pi \left( \frac{d}{2} \right)^2 \Delta T = h \pi d^2 \Delta T
\]
(4)
kde
\[
dQ \quad \text{tepelný tok [W]},
\frac{dt}{t} \quad \text{čas [s]},
A \quad \text{povrch vodní kapíčky [m^2]},
d \quad \text{průměr vodní kapíčky [m]},
\Delta T \quad \text{rozdíl mezi teplotou kapíčky vody a okolního plynu [K]},
h \quad \text{součinitel přestupu tepla konvekce [W.m^2.K^{-1}]}.
\]

Změna objemu kapíčky v čase t je:
\[
\frac{dV}{dt} = 4 \pi \frac{d^3}{dr^3} = 4 \pi \cdot 3 \cdot \frac{d^2}{dr^2} = \frac{\pi d^2}{2} \frac{d}{dr}
\]
(5)

Vzhledem ke skutečnosti, že voda má neobyčejně vysokou hodnotu skupenského tepla vypálení (při teplotě 100 °C a atmosférickém tlaku 101325 Pa je hodnota skupenského tepla vypálení 2257 KJ.kg^-1), lze energii potřebnou na oživení vody z teploty okoli na teplotu varu většinou zanedbat (H_v = L_v). Za tohoto předpokladu lze přenos tepla vyžádání pro vypaření kapíčky vody popsat následovně [6, 7]:
\[
-\frac{dQ}{dt} = H_v \cdot \frac{dV}{dt} = H_v \cdot \frac{\pi d^2}{2} \frac{d}{dr}
\]
(6)
kde
H_v \quad \text{celková změna entalpie, v průběhu ohřevu a vypařování vody [KJ.kg^-1]},
L_v \quad \text{skupenské teplo vypálení vody = 2257 [KJ.kg^-1]},
\rho \quad \text{ hustota vody = 1000 [kg.m^{-3}]}.
V \quad \text{objem vodní kapíčky [m^3]}.

Protože množství tepla předešle do kapíčky vody je dle výše uvedeného předpokladu rovno množství tepla, které je potřebné pro její vypaření, lze rovnici 4 a 6 dávat do vzájemné rovnosti:
\[
-H_v \cdot \frac{\pi d^2}{2} \frac{d}{dr} = h \pi d^2 \Delta T
\]
Rovnicí 7 lze zjednodušit na tvar:
\[
\frac{d}{dt} = \frac{2h\Delta T}{H_v \rho}
\]
(8)
Rovnicí 8 lze výřešit za využití rovnic 9 a kriteriálních rovnic 10–12
\[
h = Nu \cdot \frac{k}{d}
\]
(9)
kde
k \quad \text{součinitel tepelné vodivosti plynu (W.m\(^{-1}\).K\(^{-1}\)}.

Bezrozuměně Nusseltovo číslo, lze stanovit z obecné rovnice pro proudění okolo koule charakteristického rozměru (průměru) dle rovnic 10 [3]:
\[
Nu = 2 + 0,6 \cdot Re^{1/2} Pr^{1/3}
\]
(10)

Prandtlto číslo Pr, je přibližně konstantní a lze jej definovat rovnicí 11 následovně:
\[
Pr = \frac{\eta \cdot c}{k}
\]
(11)
kde
\eta \quad \text{dynamická viskozita [Pa.s]},
c \quad \text{měrná tepelná kapacita [kJ.kg\(^{-1}\).K\(^{-1}\)}.
\)
k \quad \text{součinitel tepelné vodivosti plynu [W.m\(^{-1}\).K\(^{-1}\)}.

Reynoldsovo číslo Re, udává poměr síl setrvávacích a vazkých. Závisí na rychlosti padajících kapíček vody ve vztahu k okolinní vzduchu a lze jej definovat rovnicí 12 následovně:
\[
Re = \frac{v \cdot d}{\nu}
\]
(12)
kde
\eta \quad \text{rychlost proudění [m.s\(^{-1}\]}.
\nu \quad \text{kinematická viskozita [m\(^2\).s\(^{-1}\]}.
\)
d \quad \text{průměr vodní kapíčky [m]}.

S využitím výše uvedeného lze již rovnici 9 vyřešit. Při řešení je však nutno zohlednit velikost kapíček vody [1, 2, 7].

**Vypařování velmi malých kapíček vody**

V případě vypařování kapíček vody menších než 0,1 mm, lze uvažovat, že jsou ve vztahu k plynu v klidu. Za tohoto předpokladu je přenos tepla uskutečňován převážně formou přirozené konvekce a Reynoldsovo číslo je téměř rovno nulo, Nu ≈ 2 a rovnici 9 tak lze zjednodušit na tvar:
\[
h = \frac{2 \cdot k}{d}
\]
(13)

Dosažením rovnic 13 do rovnic 8 a za předpokladu konstantního teplotního rozdílu lze stanovit čas potřebný k vypaření kapíček vody a maximální délku dopadu následovně:
\[
\frac{d}{dt} = \frac{4k\Delta T}{H_v \rho}
\]
(14)

Za předpokladu konstantního teplotního rozdílu:
\[
\frac{d^2}{dt^2} = \frac{4k\Delta T}{H_v \rho} \frac{d}{dt}
\]
(15)
\[
\frac{d^2}{dt^2} = \frac{4k\Delta T}{H_v \rho}
\]
(16)

V okamžiku, kdy je kapíčka vody zcela vypařena, je její průměr roven nule. Čas potřebný pro úplné vypaření kapíček vody, jenž je dobou života kapíček, je proto:
\[
t_{dp} = \frac{d_H}{k} H_v \rho
\]
(17)

Jelikož je známa jak rychlost padající kapíček tak čas potřebný pro její úplné vypaření, lze stanovit i maximální délku jejího dopadu. Protože rychlost kapíček závisí na její velikosti a tato je postupně redukována, musí být rovnice integrována v čase.
\[
\int_0^t \frac{d}{dr} = \int_0^t \frac{1}{\rho} \frac{d}{dr}
\]
(18)

Rychlost kapíček vody o průměru velikosti 0 – 0,1 mm je dle Tab. č. 1 v = 31 \cdot 10^6 \cdot d^2 [m.s\(^{-1}\)]
\[
\frac{d^2}{dt^2} = \frac{8k\Delta T}{H_v \rho} \frac{d}{dt}
\]
(19)
\[
\int_0^t \frac{d}{dr} = \int_0^t \frac{1}{\rho} \frac{d}{dr}
\]
(20)
\[
\int_0^t \frac{d}{dr} = \int_0^t \frac{1}{\rho} \frac{d}{dr}
\]
(21)

Maximální délka dopadu kapíček vody bude v případě, kdy bude kouf stacionární a lze ji stanovit dle rovnic 22
\[
t_{max} = \frac{31 \cdot 10^6 \cdot d_h^2}{2 \cdot 8k\Delta T}
\]
(22)
Maximální délka dopadu kapičky je rovna součinu počáteční rychlosti a poloviny doby života kapičky. V praxi je délka dopadu malé kapičky vody (0 – 0,1 mm) tak krátká, že se kapičky vypátrají teměř ihned, když se setkají horkými plyny.

**Vypařování větších kapiček vody**

V případě vypařování kapiček vody, jejichž velikost je větší než 0,5 mm, bude dominantní forma přenosu tepla vynucenou konvekcí. Nusseltovo číslo je [2, 7]:

\[ Nu = 2 + 0,6 \left( \frac{\eta}{k} \right)^{1/3} \left( \frac{va}{v} \right)^{1/2} \]  

(23)

Rychlost kapiček vody je v uvažovaném případě tak velká, že Nusseltovo číslo je mocnina vztahem k množství větší než 2 a lze tedy dvojku v rovnici 23 zanedbat. Rovnice rovněž obsahuje velkou řadu konstant a pro zjednodušení tak při vypočtu využíváme dočasně konstantu \( C_1 \), pro rovnice 24

\[ C_1 = 0,6 \left( \frac{\eta}{k} \right)^{1/3} \left( \frac{1}{v} \right)^{1/2} \]  

(24)

čímž dostaneme:

\[ Nu = C_1 \sqrt{vd} \]  

(25)

\[ h = C_1 \sqrt{vd} \cdot k \]  

(26)

Dosazením do rovnice 8 dostaneme:

\[ \frac{dd}{dr} = -\frac{2C_1 \cdot 4 \cdot 10^3 \cdot d^2 \cdot k \Delta T}{H \cdot \rho} \]  

(27)

kde konstanta \( C_1 = C_1 \sqrt{4 \cdot 10^5} \)

Integraci při počátečním průměru kapičky vody \( d_r \), kdy \( t = 0 \) dostaneme:

\[ \frac{dd}{dr} = -\frac{2C_1 \cdot 4 \cdot 10^3 \cdot d^2 \cdot k \Delta T}{H \cdot \rho} \]  

(29)

\[ \frac{dd}{dt} = -\frac{2C_1 \cdot 4 \cdot 10^3 \cdot d^2 \cdot k \Delta T}{H \cdot \rho} \]  

(30)

V okamžiku, kdy je kapička vody zcela vypařena, je její průměr roven nule. Čás potřebný pro úplné vypaření kapičky vody, jenž je dobou života kapičky, je proto:

\[ t_{ff} = \frac{d_0 H \cdot \rho}{2C_1 \cdot 4 \cdot 10^3 \cdot k \Delta T} \]  

(31)

Kapička vody se normálně při požáru nepohybuje v prostředí, kde je pohyb vzduchu stationární. Ve vzestupném sloupci zpodln hoření se horké plyny pohybojí vzhůru rychlosti 5 – 10 m/s [7]. Vzhledem k této skutečnosti, tak musí být rychlost padající kapičky vody větší než je rychlost vzestupného proudu plynu (fire plume). Relativní rychlost kapičky je:

\[ \frac{dl}{dt} = v - v_i \]  

(32)

kde

\( v_i \) - konvekční vzestupná rychlost vzduchu [m/s].

Rychlost padající kapiček vody závisí na jejím průměru, dle Tab. č. 1 \( v = 4 \cdot 10^{-2} \cdot [m/s] \) a dle rovnice 30 vyplývá:

\[ d_i = \frac{2C_1 \cdot 4 \cdot 10^3 \cdot d^2 \cdot k \Delta T}{H \cdot \rho} \]  

(33)

Dosazením do rovnice 32:  

\[ \frac{dl}{dt} = 4 \cdot 10^3 \left( d_0 - \frac{2C_1 \cdot 4 \cdot 10^3 \cdot d^2 \cdot k \Delta T}{H \cdot \rho} t \right) - v_i \]  

(34)

Délku pádu kapičky do okamžiku, kdy dojde ke změně jejího směru, lze stanovit integrací rovnice 34 v čase následovně:

\[ l = \int_0^t 4 \cdot 10^3 \left( d_0 - \frac{2C_1 \cdot 4 \cdot 10^3 \cdot d^2 \cdot k \Delta T}{H \cdot \rho} t \right) - v_i dt \]  

(35)

\[ l = 4 \cdot 10^3 \left( d_0 - \frac{2C_1 \cdot 4 \cdot 10^3 \cdot d^2 \cdot k \Delta T}{H \cdot \rho} t \right)^2 - v_i t \]  

(36)

V případě, že se kout nepohybuje, lze stanovit maximální délku dopadu kapičky vody (při \( d = 0 \)) dle rovnice 37:

\[ l_{max} = \frac{4 \cdot 10^3 d_0}{2} \left( \frac{d_0 H \cdot \rho}{2C_1 \cdot 4 \cdot 10^3 \cdot k \Delta T} \right) \]  

(37)

**Objemové změny kouře**

Velikost kapiček vody a vzdálenost jakou je schopna v horkém prostředí požáru z místa aplikace uzraž až do svého zániku, má významný vliv na to, jak funguje SHZ ovální podmínky v místě požáru. Skutečnost, že se voda bude vypařovat v místě požáru a horké vrtu kouřových plynů, může vyvolat dva vzájemně odlišné efekty:

- Objem horké kouřové vrstvy bude redukován, protože se spotřebuje energie k tomu, aby se voda vypařila. Pokles teplovy vrtu kouřové vrstvy vyvolá redukci jejího objemu.

- Objem kouřové vrstvy se zvětší, protože se bude vytvářet vodní pár.

To, který ze zmíněných dvou faktorů bude převažovat, ovlivňuje skutečnost, kde se bude voda vypařovat. Určujícím faktorem se tak stává právě velikost kapiček vody a teplovy kouřové vrstvy. Velmi efektivně lze tuto skutečnost demonstrovat v případě vodního SHZ, využívajícího mnohovrstvou trysku pro ochlazování plynů v místě požáru. Rozsah změn v objemu kouře v průběhu procesu hoření požáru, lze odladit užitím zákonů pro chování ideálních plynů.

Před aplikací vody: \( P_0V_0 = n_0RT_0 \)

Po aplikaci vody: \( P_fV_f = n_fRT_f \)

Vzhledem k tomu, že tlak v místě požáru (místě aplikace vody) zůstává do značné míry konstantní, lze poměr mezi objemem kouře před a po aplikaci vody vyjádřit dle rovnice 38:

\[ \frac{V_f}{V_0} = \frac{n_f}{n_0} \frac{T_f}{T_0} \]  

(38)

Jelikož množství energie odvedené kouřem je stejně jako energie potřebné k vypaření vody a k ohrázi na teplotu stejnou jako má kout, lze za předpokladu, že systém je adiabatický, množství energie popsat rovnici 39 [7].

\[ n_C, p, q \cdot (T_0 - T_f) = (n_f - n_0) (bMwL_{w,v} + C_p, w (T_f - 373)) \]  

(39)

Úpravou z rovnice 39 pak:

\[ \frac{(n_f - n_0)}{n_0} \frac{C_p, p, q \cdot (T_0 - T_f)}{bMwL_{w,v} + C_p, p, q (T_f - 373)} = \left( \frac{T_f}{T_0} \right) \]  

(40)

Rovnici 40 lze kombinovat s rovnici 38 následovně:

\[ \frac{V_f}{V_0} = \frac{n_f}{n_0} \frac{T_f}{T_0} \left( \frac{bMwL_{w,v} + C_p, p, q (T_f - 373)}{bMwL_{w,v} + C_p, w (T_f - 373)} \right) + 1 \]  

(41)

kde v rovnicích 38 až 41

\( T_w \) teplopta plynů (kouře) před aplikaci vody [K],
$T$, teplota plynů (kouře) po aplikaci vody [K],
$V$, objem plynů (kouře) při teplotě $T$ před aplikací vody [m³],
$V'$, objem plynů (kouře) při teplotě $T'$ po aplikaci vody [m³],
$P$, tlak plynů při teplotě $T$ před aplikací vody [Pa],
$P'$, tlak plynů při teplotě $T'$ po aplikaci vody [Pa],
$a$, celkový počet molů plynů při teplotě $T$ před aplikací vody [mol],
$b$, celkový počet molů plynů při teplotě $T'$ po aplikaci vody [mol],
$R$, molární plynová konstanta = 8,31433 [J mol⁻¹ K⁻¹],
$C_m$, molární tepelná kapacita kouře [J mol⁻¹ K⁻¹],
$C_v$, molární tepelná kapacita vodní pary [J mol⁻¹ K⁻¹],
$b$, podíl vody, který se vypraží v horkém kouři [-],
$L_v$, skupenské výparné teplo vody [J g⁻¹],
$M_v$, molární hmotnost vody [g mol⁻¹].

Poměrná změna objemu kouře při požáru v místnosti před a po aplikaci vody, závisí na skutečnosti, že se zde voda bude vypražovat na horkém povrchu v místě požáru nebo ve vratné kouře. Závislost poměrně objemové změny kouře na konečné teplotě kouře při rozdílném podílu vody, který se vypraží v horkém kouři o počáteční teplotě 700 °C demonstruje Obr. č. 3 [4, 5, 7].

Obr. č. 3 Poměrná změna objemu kouře v závislosti na konečné teplotě kouře při rozdílné hodnotě $b$.

Závěr

Problmatika efektivního využití vody jako hasicí látky je v současnosti velmi často diskutovaným tématem. Přestože je voda 2

$\Delta H_{mp}(T) = 31,63 + \frac{5,083 - T}{10^3} + \frac{4,597 - T^2}{10^6}$ [J mol⁻¹ K⁻¹] [5].

Výpis výšky hladiny horľavej kvapaliny na rýchlost odhorovie

Ing. Miroslav Novotný
Doc. Ing. Ivana Turekova, PhD.

Ústav bezpečnostného a environmentálního inžinierstva Materiałovětechnologická fakulta STU v Trnave
miroslav.novotny@stuba.sk, ivana.turekova@stuba.sk

Abstrakt

Rýchlost odhorovie horľavých látok je jedným zo základných hodnotiacich parametrov horľavých látok. Je dôležitou veličinou aj pri matematických výpočtoch na odhad správania sa

historicky nejstarší hasicí látkou je i v dnešní době stále nečasto využívaným hasivem u většiny požárů. Vzhledem ke skutečnosti, že jen zřídka kdy je při hasení maximálně využito potenciálu skupenského tepla výparného vody, na jehož využití je založen dominantní chladič hasební efekty vody, je potřeba se touto otázkou stále zabývat. Příspěvek přináší souhrn zjednodušených výpočtů výpočtu výšky ušliček potenciálu nejčastěji používaných metod pro odhad rychlosti, maximální doby životu a maximální délky dopadu kapíček vody v horkém prostředí požárů. Optimalizované zohlednění všech zmíněných faktorů může přispět například k prodloužení doby bezpečné evakuace osob, korekci polohy rozhodnutí mezi vratou horkého kouře a čistého vzduchu, eliminaci nebezpečí vzniku flashoveru, výrazné minimalizaci škod způsobených požárem a jeho hašením apod.

Použitá literatura