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Abstract. This paper proposes methods to generate
various types of Linear Voltage Transfer Curves (VTC)
using Operational Trans-Resistance Amplifier (OTRA)
as the active block. It further goes on to propose meth-
ods to multiplex various individual Linear VTCs to ob-
tain any form of Piece-Wise Linear Voltage Transfer
Curves (PWL), which find many applications in the
world of circuitry. One particular application has been
highlighted, i.e. generation of High-Frequency Sinu-
soids. Simulations of the Circuits proposed via Cadence
Virtuoso, using TowerJazz’s 180 nm Technology Node
have been reported, which satisfy the aim behind its de-
velopment.
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1. Introduction

Voltage transfer curves are essential in any form of ana-
log signal processing. They provide an appropriate out-
put waveform based on the need. Wave shaping finds
many uses in electronics, from voltage limitation, to
signal processing, and waveform generation. Sinusoidal
signals are an integral part of many electronic appara-
tus, from communication systems, to power conversion,
control systems, data processing, and instruments [1]
and [2].

The usual choice of active block for such implemen-
tations is the Operational Amplifier (Op-Amp). How-
ever, this comes with many disadvantages. Op-Amp
based circuits are limited by their low slew rate, and

low bandwidth of operation, which makes them unde-
sirable for high-frequency and high-speed operations.
Current-mode processing is a leading choice of today’s
engineers, which gives us many advantages like high
slew rate. As such, it is more linear, more dynamic,
and faster in operation as detailed in [3]. This has
made current-mode active blocks increasingly popular.
The OTRA block used in this work offers a much higher
pole (corner frequency) than the generic Op-Amp, and
a higher bandwidth of operation. Many applications
of the OTRA have emerged in recent times, which in-
dicate the usefulness of OTRA [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19] and
[20].

Several PWL VTC and sinusoidal oscillators using
current-mode active blocks exist in literature. Current
Limiters based on the active block CDTA, and their
practicality are detailed in [21]. Methods to synthesise
PWL VTCs have been discussed in [22], which can be
modified for our use. CDTA [23] and [24], and OTRA
[25], [26] and [27] based oscillators show the applica-
tion of current-mode active blocks in generation of si-
nusoids. However, they use harmonic methods, which
usually fail in high frequencies. Also, the solution in
[24] has current inputs, making it impractical. None
of the cited works use current-mode active blocks in
PWL VTC generation to produce a sinusoid, which
shows the gap in research, and the motivation behind
this work.

In this work, we propose methods to generate any
desired PWL VTC using OTRA active block, which
gives us benefits of current-mode processing [3]. One
specific use case of voltage controlled high-frequency
sinusoid generation is detailed, where voltage-mode ac-
tive blocks and harmonic methods fail. All the circuits
proposed have been simulated successfully, and the re-
sults are included.
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2. The OTRA

The Operational Trans-Resistance Amplifier (OTRA)
is a three-terminal device as shown in Fig. 1.

+
_ Rm

Ip

In

Vo

Fig. 1: OTRA block diagram.

The OTRA amplifies the difference of the currents Ip
and In and the output is the voltage Vo in accordance
to port characteristics as expressed by Eq. (1). The
Rm is known as the trans-resistance gain, and its value
approaches infinity for an ideal OTRA, which in turn
forces the input currents to be equal. For ideal oper-
ation, Vp and Vn should be zero. Also, Vo should not
depend on the current drawn from the output terminal,
i.e. Io. VpVn

Vo

 =

 0 0 0
0 0 0
Rm −Rm 0

 ·
IpIn
Io

 . (1)

The output of an ideal OTRA reaches positive or
negative saturation levels (VDD or VSS) if used in an
open loop configuration as the Rm is infinite. Thus,
for linear applications the OTRA must be used in
a negative feedback configuration. The OTRA used
in this work [28] is shown in Fig. 2. The values of tran-
sistor W/L ratios, VB1 and IB may be referenced from
[28]. The OTRA gives us a Gain-Bandwidth Prod-
uct of 600 GHz Ω, which makes it suitable for High-
Frequency Applications.
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Fig. 2: OTRA CMOS circuit [14].

3. Proposed VTC Generators

Positive and negative slope VTC generators based on
OTRA are proposed in this section.

The schematic of the positive generator is shown in
Fig. 3, where the OTRA is used in the non-inverting
amplifier configuration [28]. The output voltage Vout
is related to the input voltage Vin by Eq. (2).

Vout =
Rf

Rin
Vin +

Rf

Rb
Vbias. (2)

The first term in the RHS of Eq. (2) provides the
desired slope, and the second term introduces the re-
quired DC offset.

Figure 4 depicts the negative slope VTC generator.
Here, the OTRA is used in inverting amplifier config-
uration [29]. The output voltage Vout is related to the
input voltage Vin by Eq. (3).

Vout = − Rf

Rin
Vin +

Rf

Rb
Vbias. (3)

V
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Fig. 3: Schematic for positive slope linear VTC generator.
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Fig. 4: Schematic for negative slope linear VTC generator.

4. Proposed PWL VTC
Generators

The individual VTC generators as proposed in Sec. 3.
can be multiplexed to generate a complex piece-wise

linear voltage transfer curve (PWL VTC). To switch
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τTG =
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Kn
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3
)
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2


 .

(4)

between appropriate VTCs at breakpoints, compara-
tors need to be used, which compare the input voltage
with the breakpoint voltage. The comparators feed
a digital logic circuit, which needs to be synthesised
for each use case. The logic gates will operate between
VDD and VSS . The digital logic should be designed
such that one and exactly one channel of the multi-
plexer is active for each and every piece of the PWL
VTC, i.e. for all values of input voltage, exactly one
of (S0, S0’), (S1, S1’), or (S2, S2’) are active, and the
rest inactive.

The digital logic controls the output of the analog
multiplexer formed by transmission. The multiplexer
lets the output from the desired VTC Generator pass
based on the digital control logic. Standard CMOS
design techniques may be used to design the gates [30].

Figure 5 and Fig. 6 show the implementation of the
analog multiplexer and the OTRA based comparator
respectively.

Input 1

Input 0

Input 2

S0

S0'

S1

S1'

S2

S2'

Output

Fig. 5: Analog multiplexer made with transmission gates.
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Fig. 6: OTRA working as a comparator in open-loop configu-
ration.

Using the blocks of Fig. 3, Fig. 4, Fig. 5 and Fig. 6,
and the procedure outlined above, any desired PWL
VTC can be generated. A simple use case of this has
been illustrated in Sec. 5. , which uses a PWL VTC
to convert a triangular wave into a sinusoid.

5. Application:
High-Frequency Sinusoid
Generation

A triangular wave, when passed through an appropri-
ate PWL VTC, can produce an approximate sinusoid,
as detailed in [1]. This concept has been used to il-
lustrate the usefulness of the PWL VTC generators
proposed in this work.

The triangular wave is generated from a voltage-
controlled ring oscillator (demarcated by dashed line in
Fig. 7) as detailed in [30], with transmission gates to
control the delays, connected to an integrator circuit
based on OTRA [29]. Figure 7 shows the triangular
wave generator used. All the transistors in the Volt-
age Controlled Ring Oscillator have the W/L ratio as
1 µ/0.5 µ.

Assuming the tripping voltage for an inverter is
(VDD + Vss)/2, we get the equation for the propaga-
tion delay through the transmission gate as detailed in
Eq. (4). Where the CL is the input capacitance of in-
verter, and VX the DC control voltage. Equation (5)
gives the delay for one inverter, as explained in [30].

τinv =
τphl + τplh

2
. (5)

Thus, the frequency of the oscillator can be given by
Eq. (6).

f =
1

10(τTG + τinv)
. (6)

OTRA 1 is a comparator which compares this rect-
angular wave to ground, and outputs a sharper rectan-
gular wave.

OTRA 2 is a lossy integrator [29]. It integrates the
rectangular wave into a triangular wave. OTRA 3 is
used to boost the output of OTRA 2 to a rail to rail
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value. This outputs a triangular wave, which is passed
on to the PWL VTC generator to output a sinusoid.
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Fig. 7: Triangular wave generator.
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Fig. 8: PWL VTC generator for triangular to sinusoid conver-
sion.

The PWL VTC generator for triangular to sinusoidal
conversion is as shown in Fig. 8 OTRAs 1, 2 and 3 are
used to generate the individual PWLs as follows:

• OTRA 1 generates a VTC with slope = −1 and
Vbias = 0 V.

• OTRA 2 generates a VTC with slope = −0.4 and
Vbias = +0.6 V.

• OTRA 3 generates a VTC with slope = −0.4 and
Vbias = −0.6 V.

OTRAs 4 and 5 are connected as comparators with
reference voltages +1 V and −1 V respectively.

OTRA 6 is the output stage that converts the PWL
VTC output to a rail to rail sinusoid. The output of
an OTRA based amplifier near the rails is naturally
slewed, and this can be used to our advantage to obtain
a curvature in the transient waveform near the rails.

6. Simulation Results

The functional verification of proposed circuits is car-
ried out on Cadence Virtuoso ADE using TowerJazz’s
180 nm technology node. VDD is taken as +2 V and
VSS is taken to be −2 V globally for simulations.
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(a) Positive VTC without bias.
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Fig. 9: Positive VTC.
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(a) Negative VTC without Bias.
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Fig. 10: Negative VTC.
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Fig. 11: Frequency variation of triangular wave output for Vbias values as (i) 200 mV, (ii) 400 mV, (iii) 600 mV, (iv) 800 mV and
(v) 1 V.

The simulated and theoretical output of the posi-
tive VTC generator without and with bias have been
reported in Fig. 9(a) and Fig. 9(b) respectively. Sim-
ilar outputs for negative VTC generators are placed
in Fig. 10(a) and Fig. 10(b). For these simulations,
the values of Rb and Rin were taken to be 10 kΩ,
Vbias and Rf were varied accordingly.

The operation of the proposed VTC generators is
tested against process corner variations, for typical,
fast-fast, fast-slow, slow-fast and slow-slow corners.
Simulation results are shown in Fig. 12, which prove
that the outputs are insensitive to process variations.
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Fig. 12: Process corner variation.

Further, to test the effect of temperature variations,
simulations were carried out by varying the tempera-
ture of the simulation environment, from −20 ◦C to
+60 ◦C, in steps of 20 ◦C. The simulated output is
shown in Fig. 13. The plot shows that the circuits are
resilient to any forms of temperature variations.

Transient response of the triangular wave generator
is shown in Fig. 11, which also shows variation in fre-
quency with respect to control voltage VX .

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Input Voltage (V)

-0.5

0

0.5

1

O
ut

pu
t V

ol
ta

ge
 (

V
) -20

0
20
40
60

Fig. 13: Temperature variation.

To verify the functionality of the sinusoid generator,
the different VTCs chosen are as follows:

• OTRA 1 is generating a VTC with slope = −1
and Vbias = 0 V. The values of Ri1 and Rf1 are
both taken to be 100 KΩ.

• OTRA 2 is generating a VTC with slope = −0.4
and Vbias = +0.6 V. The values of Ri2 and Rf2

are taken to be 100 KΩ and 40 KΩ respectively.

• OTRA 3 is generating a VTC with slope = −0.4
and Vbias = −0.6 V. The values of Ri3 and Rf3

are taken to be 100 KΩ and 40 KΩ respectively.

Rc was taken to be 10 KΩ, and standard CMOS logic
gates were used for the digital logic, as detailed in [30].

Theoretically, by Eq. (6), the frequency for the VCO
at VX = 180 mV was found to be 1.13 MHz. On simu-
lation, we found it was equal to 1 MHz. It can thus be
calculated that the frequency deviation between theo-
retical and experimental frequencies is 13 % for the case
implemented. The experimental value for frequency is
lower than theoretical as the theory does not account
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for delays caused by the parasitic resistances and ca-
pacitances, which increase the time, and thus reduce
the frequency.

The three individual VTCs are shown in Fig. 14,
and the transient response output of the PWL VTC
Generator is shown in Fig. 15.
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Fig. 14: The individual VTCs and combined PWL VTC.
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Fig. 15: Transient response of the PWL VTC generator.

In the output stage, Roi and Rof were taken to be
10 KΩ and 25 KΩ respectively. The transient output
of the output stage is shown in Fig. 16, in comparison
with a standard sine wave. The obtained waveform
slightly deviates from the ideal waveform, as we have
used only three VTC sections. However, on increas-
ing the number of VTC sections, this deviation can be
reduced.
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Fig. 16: Transient response of the output stage.

Figure 17 shows the frequency spectrum of the out-
put in comparison with that of an actual sine wave for
1 MHz frequency. As can be clearly observed, there is
a good level of accuracy achieved in delivering a sinu-
soid output. Total Harmonic Distortion was calculated

for the generated sinusoid, up to five harmonics, and
the value was found to be 9.3776 %. The THD can
be further improved by increasing the number of VTC
sections.
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Fig. 17: Frequency spectrum of the sinusoid generated.

Monte-Carlo Analysis was done to test the perfor-
mance of the circuit against component value varia-
tions. The resistors were varied with 10 % tolerance
from the nominal value. The test was performed for
500 samples. It was found that for a < 5 % mismatch
with respect to the nominal waveform, over 83 % of
the samples passed the Monte-Carlo Simulation, which
illustrates the low sensitivity to passive component pa-
rameter variations that our circuit exhibits. Monte-
Carlo Analysis was also performed on the MOSFET
Width parameter (W) with 5 % tolerance, < 5 % mis-
match pass mark, and 500 samples yielded a pass for
over 70 % of the samples. As on changing the W, the
frequency of the VCO changes, the waveform is not
a match to the nominal value, and shows variation.
Also, the OTRA Gain is also changed, thus causing
the mismatch.

Analyses for testing the behavior of the circuit
against parasitic elements were performed. The in-
put capacitance for the Inverter was 83 fF, and for
the NOR Gate was 104 fF. The Output Capacitance
of the OTRA was found to be 3.04 pF, which is much
larger than that of the Digital Logic, and hence, the
OTRA will dominate in the parasitic effects. It can be
noted from [28] that for the low gain case as used in
this work, the OTRA will function well for frequencies
much higher than the ones at which we are generating
the sinusoid. Hence, the effect of parasitics is negligible
in our work.

7. Conclusion

In this work, positive and negative slope linear VTC
generators using OTRA have been proposed, which can
be designed to generate any linear curve as per the de-
sign rules mentioned in Eq. (2) and Eq. (3). They
can be multiplexed to generate any desired PWL VTC
as detailed in Sec. 4. As a particular application,
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three different VTCs have been multiplexed to gener-
ate a PWL VTC that converts a triangular wave into
a sinusoid. This is useful in generating high-frequency
sinusoids where harmonic oscillator methods and other
voltage mode active block based circuits fail.

Simulation results on Cadence Virtuoso using Tow-
erJazz’s 180 nm technology node have been reported
for all the circuits proposed. The VTC generators
were tested for process corner and temperature varia-
tions, and were found to be extremely resilient to their
changes. The frequency spectrum of the generated si-
nusoid is found to be very close to that of an original
sine wave.
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